Stochastic Gronwall inequality

Stochastic Gronwall inequality is a generalization of Gronwall's inequality and has been used for proving the well-posedness of path-dependent stochastic differential equations with local monotonicity and coercivity assumption with respect to supremum norm.[1][2]

Statement

Let X ( t ) , t 0 {\displaystyle X(t),\,t\geq 0} be a non-negative right-continuous ( F t ) t 0 {\displaystyle ({\mathcal {F}}_{t})_{t\geq 0}} -adapted process. Assume that A : [ 0 , ) [ 0 , ) {\displaystyle A:[0,\infty )\to [0,\infty )} is a deterministic non-decreasing càdlàg function with A ( 0 ) = 0 {\displaystyle A(0)=0} and let H ( t ) , t 0 {\displaystyle H(t),\,t\geq 0} be a non-decreasing and càdlàg adapted process starting from H ( 0 ) 0 {\displaystyle H(0)\geq 0} . Further, let M ( t ) , t 0 {\displaystyle M(t),\,t\geq 0} be an ( F t ) t 0 {\displaystyle ({\mathcal {F}}_{t})_{t\geq 0}} - local martingale with M ( 0 ) = 0 {\displaystyle M(0)=0} and càdlàg paths.

Assume that for all t 0 {\displaystyle t\geq 0} ,

X ( t ) 0 t X ( u ) d A ( u ) + M ( t ) + H ( t ) , {\displaystyle X(t)\leq \int _{0}^{t}X^{*}(u^{-})\,dA(u)+M(t)+H(t),} where X ( u ) := sup r [ 0 , u ] X ( r ) {\displaystyle X^{*}(u):=\sup _{r\in [0,u]}X(r)} .

and define c p = p p 1 p {\displaystyle c_{p}={\frac {p^{-p}}{1-p}}} . Then the following estimates hold for p ( 0 , 1 ) {\displaystyle p\in (0,1)} and T > 0 {\displaystyle T>0} :[1][2]

  • If E ( H ( T ) p ) < {\displaystyle \mathbb {E} {\big (}H(T)^{p}{\big )}<\infty } and H {\displaystyle H} is predictable, then E [ ( X ( T ) ) p | F 0 ] c p p E [ ( H ( T ) ) p | F 0 ] exp { c p 1 / p A ( T ) } {\displaystyle \mathbb {E} \left[\left(X^{*}(T)\right)^{p}{\Big \vert }{\mathcal {F}}_{0}\right]\leq {\frac {c_{p}}{p}}\mathbb {E} \left[(H(T))^{p}{\big \vert }{\mathcal {F}}_{0}\right]\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace } ;
  • If E ( H ( T ) p ) < {\displaystyle \mathbb {E} {\big (}H(T)^{p}{\big )}<\infty } and M {\displaystyle M} has no negative jumps, then E [ ( X ( T ) ) p | F 0 ] c p + 1 p E [ ( H ( T ) ) p | F 0 ] exp { ( c p + 1 ) 1 / p A ( T ) } {\displaystyle \mathbb {E} \left[\left(X^{*}(T)\right)^{p}{\Big \vert }{\mathcal {F}}_{0}\right]\leq {\frac {c_{p}+1}{p}}\mathbb {E} \left[(H(T))^{p}{\big \vert }{\mathcal {F}}_{0}\right]\exp \left\lbrace (c_{p}+1)^{1/p}A(T)\right\rbrace } ;
  • If E H ( T ) < , {\displaystyle \mathbb {E} H(T)<\infty ,} then E [ ( X ( T ) ) p | F 0 ] c p p ( E [ H ( T ) | F 0 ] ) p exp { c p 1 / p A ( T ) } {\displaystyle \displaystyle {\mathbb {E} \left[\left(X^{*}(T)\right)^{p}{\Big \vert }{\mathcal {F}}_{0}\right]\leq {\frac {c_{p}}{p}}\left(\mathbb {E} \left[H(T){\big \vert }{\mathcal {F}}_{0}\right]\right)^{p}\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace }} ;

Proof

It has been proven by Lenglart's inequality.[1]

References

  1. ^ a b c Mehri, Sima; Scheutzow, Michael (2021). "A stochastic Gronwall lemma and well-posedness of path-dependent SDEs driven by martingale noise". Latin Americal Journal of Probability and Mathematical Statistics. 18: 193–209. doi:10.30757/ALEA.v18-09. S2CID 201660248.
  2. ^ a b von Renesse, Max; Scheutzow, Michael (2010). "Existence and uniqueness of solutions of stochastic functional differential equations". Random Oper. Stoch. Equ. 18 (3): 267–284. arXiv:0812.1726. doi:10.1515/rose.2010.015. S2CID 18595968.