Griffiths inequality

Correlation inequality in statistical mechanics

In statistical mechanics, the Griffiths inequality, sometimes also called Griffiths–Kelly–Sherman inequality or GKS inequality, named after Robert B. Griffiths, is a correlation inequality for ferromagnetic spin systems. Informally, it says that in ferromagnetic spin systems, if the 'a-priori distribution' of the spin is invariant under spin flipping, the correlation of any monomial of the spins is non-negative; and the two point correlation of two monomial of the spins is non-negative.

The inequality was proved by Griffiths for Ising ferromagnets with two-body interactions,[1] then generalised by Kelly and Sherman to interactions involving an arbitrary number of spins,[2] and then by Griffiths to systems with arbitrary spins.[3] A more general formulation was given by Ginibre,[4] and is now called the Ginibre inequality.

Definitions

Let σ = { σ j } j Λ {\displaystyle \textstyle \sigma =\{\sigma _{j}\}_{j\in \Lambda }} be a configuration of (continuous or discrete) spins on a lattice Λ. If AΛ is a list of lattice sites, possibly with duplicates, let σ A = j A σ j {\displaystyle \textstyle \sigma _{A}=\prod _{j\in A}\sigma _{j}} be the product of the spins in A.

Assign an a-priori measure dμ(σ) on the spins; let H be an energy functional of the form

H ( σ ) = A J A σ A   , {\displaystyle H(\sigma )=-\sum _{A}J_{A}\sigma _{A}~,}

where the sum is over lists of sites A, and let

Z = d μ ( σ ) e H ( σ ) {\displaystyle Z=\int d\mu (\sigma )e^{-H(\sigma )}}

be the partition function. As usual,

= 1 Z σ ( σ ) e H ( σ ) {\displaystyle \langle \cdot \rangle ={\frac {1}{Z}}\sum _{\sigma }\cdot (\sigma )e^{-H(\sigma )}}

stands for the ensemble average.

The system is called ferromagnetic if, for any list of sites A, JA ≥ 0. The system is called invariant under spin flipping if, for any j in Λ, the measure μ is preserved under the sign flipping map σ → τ, where

τ k = { σ k , k j , σ k , k = j . {\displaystyle \tau _{k}={\begin{cases}\sigma _{k},&k\neq j,\\-\sigma _{k},&k=j.\end{cases}}}

Statement of inequalities

First Griffiths inequality

In a ferromagnetic spin system which is invariant under spin flipping,

σ A 0 {\displaystyle \langle \sigma _{A}\rangle \geq 0}

for any list of spins A.

Second Griffiths inequality

In a ferromagnetic spin system which is invariant under spin flipping,

σ A σ B σ A σ B {\displaystyle \langle \sigma _{A}\sigma _{B}\rangle \geq \langle \sigma _{A}\rangle \langle \sigma _{B}\rangle }

for any lists of spins A and B.

The first inequality is a special case of the second one, corresponding to B = ∅.

Proof

Observe that the partition function is non-negative by definition.

Proof of first inequality: Expand

e H ( σ ) = B k 0 J B k σ B k k ! = { k C } C B J B k B σ B k B k B !   , {\displaystyle e^{-H(\sigma )}=\prod _{B}\sum _{k\geq 0}{\frac {J_{B}^{k}\sigma _{B}^{k}}{k!}}=\sum _{\{k_{C}\}_{C}}\prod _{B}{\frac {J_{B}^{k_{B}}\sigma _{B}^{k_{B}}}{k_{B}!}}~,}

then

Z σ A = d μ ( σ ) σ A e H ( σ ) = { k C } C B J B k B k B ! d μ ( σ ) σ A σ B k B = { k C } C B J B k B k B ! d μ ( σ ) j Λ σ j n A ( j ) + k B n B ( j )   , {\displaystyle {\begin{aligned}Z\langle \sigma _{A}\rangle &=\int d\mu (\sigma )\sigma _{A}e^{-H(\sigma )}=\sum _{\{k_{C}\}_{C}}\prod _{B}{\frac {J_{B}^{k_{B}}}{k_{B}!}}\int d\mu (\sigma )\sigma _{A}\sigma _{B}^{k_{B}}\\&=\sum _{\{k_{C}\}_{C}}\prod _{B}{\frac {J_{B}^{k_{B}}}{k_{B}!}}\int d\mu (\sigma )\prod _{j\in \Lambda }\sigma _{j}^{n_{A}(j)+k_{B}n_{B}(j)}~,\end{aligned}}}

where nA(j) stands for the number of times that j appears in A. Now, by invariance under spin flipping,

d μ ( σ ) j σ j n ( j ) = 0 {\displaystyle \int d\mu (\sigma )\prod _{j}\sigma _{j}^{n(j)}=0}

if at least one n(j) is odd, and the same expression is obviously non-negative for even values of n. Therefore, Z<σA>≥0, hence also <σA>≥0.

Proof of second inequality. For the second Griffiths inequality, double the random variable, i.e. consider a second copy of the spin, σ {\displaystyle \sigma '} , with the same distribution of σ {\displaystyle \sigma } . Then

σ A σ B σ A σ B = σ A ( σ B σ B )   . {\displaystyle \langle \sigma _{A}\sigma _{B}\rangle -\langle \sigma _{A}\rangle \langle \sigma _{B}\rangle =\langle \langle \sigma _{A}(\sigma _{B}-\sigma '_{B})\rangle \rangle ~.}

Introduce the new variables

σ j = τ j + τ j   , σ j = τ j τ j   . {\displaystyle \sigma _{j}=\tau _{j}+\tau _{j}'~,\qquad \sigma '_{j}=\tau _{j}-\tau _{j}'~.}

The doubled system {\displaystyle \langle \langle \;\cdot \;\rangle \rangle } is ferromagnetic in τ , τ {\displaystyle \tau ,\tau '} because H ( σ ) H ( σ ) {\displaystyle -H(\sigma )-H(\sigma ')} is a polynomial in τ , τ {\displaystyle \tau ,\tau '} with positive coefficients

A J A ( σ A + σ A ) = A J A X A [ 1 + ( 1 ) | X | ] τ A X τ X {\displaystyle {\begin{aligned}\sum _{A}J_{A}(\sigma _{A}+\sigma '_{A})&=\sum _{A}J_{A}\sum _{X\subset A}\left[1+(-1)^{|X|}\right]\tau _{A\setminus X}\tau '_{X}\end{aligned}}}

Besides the measure on τ , τ {\displaystyle \tau ,\tau '} is invariant under spin flipping because d μ ( σ ) d μ ( σ ) {\displaystyle d\mu (\sigma )d\mu (\sigma ')} is. Finally the monomials σ A {\displaystyle \sigma _{A}} , σ B σ B {\displaystyle \sigma _{B}-\sigma '_{B}} are polynomials in τ , τ {\displaystyle \tau ,\tau '} with positive coefficients

σ A = X A τ A X τ X   , σ B σ B = X B [ 1 ( 1 ) | X | ] τ B X τ X   . {\displaystyle {\begin{aligned}\sigma _{A}&=\sum _{X\subset A}\tau _{A\setminus X}\tau '_{X}~,\\\sigma _{B}-\sigma '_{B}&=\sum _{X\subset B}\left[1-(-1)^{|X|}\right]\tau _{B\setminus X}\tau '_{X}~.\end{aligned}}}

The first Griffiths inequality applied to σ A ( σ B σ B ) {\displaystyle \langle \langle \sigma _{A}(\sigma _{B}-\sigma '_{B})\rangle \rangle } gives the result.

More details are in [5] and.[6]

Extension: Ginibre inequality

The Ginibre inequality is an extension, found by Jean Ginibre,[4] of the Griffiths inequality.

Formulation

Let (Γ, μ) be a probability space. For functions fh on Γ, denote

f h = f ( x ) e h ( x ) d μ ( x ) / e h ( x ) d μ ( x ) . {\displaystyle \langle f\rangle _{h}=\int f(x)e^{-h(x)}\,d\mu (x){\Big /}\int e^{-h(x)}\,d\mu (x).}

Let A be a set of real functions on Γ such that. for every f1,f2,...,fn in A, and for any choice of signs ±,

d μ ( x ) d μ ( y ) j = 1 n ( f j ( x ) ± f j ( y ) ) 0. {\displaystyle \iint d\mu (x)\,d\mu (y)\prod _{j=1}^{n}(f_{j}(x)\pm f_{j}(y))\geq 0.}

Then, for any f,g,−h in the convex cone generated by A,

f g h f h g h 0. {\displaystyle \langle fg\rangle _{h}-\langle f\rangle _{h}\langle g\rangle _{h}\geq 0.}

Proof

Let

Z h = e h ( x ) d μ ( x ) . {\displaystyle Z_{h}=\int e^{-h(x)}\,d\mu (x).}

Then

Z h 2 ( f g h f h g h ) = d μ ( x ) d μ ( y ) f ( x ) ( g ( x ) g ( y ) ) e h ( x ) h ( y ) = k = 0 d μ ( x ) d μ ( y ) f ( x ) ( g ( x ) g ( y ) ) ( h ( x ) h ( y ) ) k k ! . {\displaystyle {\begin{aligned}&Z_{h}^{2}\left(\langle fg\rangle _{h}-\langle f\rangle _{h}\langle g\rangle _{h}\right)\\&\qquad =\iint d\mu (x)\,d\mu (y)f(x)(g(x)-g(y))e^{-h(x)-h(y)}\\&\qquad =\sum _{k=0}^{\infty }\iint d\mu (x)\,d\mu (y)f(x)(g(x)-g(y)){\frac {(-h(x)-h(y))^{k}}{k!}}.\end{aligned}}}

Now the inequality follows from the assumption and from the identity

f ( x ) = 1 2 ( f ( x ) + f ( y ) ) + 1 2 ( f ( x ) f ( y ) ) . {\displaystyle f(x)={\frac {1}{2}}(f(x)+f(y))+{\frac {1}{2}}(f(x)-f(y)).}

Examples

  • To recover the (second) Griffiths inequality, take Γ = {−1, +1}Λ, where Λ is a lattice, and let μ be a measure on Γ that is invariant under sign flipping. The cone A of polynomials with positive coefficients satisfies the assumptions of the Ginibre inequality.
  • (Γ, μ) is a commutative compact group with the Haar measure, A is the cone of real positive definite functions on Γ.
  • Γ is a totally ordered set, A is the cone of real positive non-decreasing functions on Γ. This yields Chebyshev's sum inequality. For extension to partially ordered sets, see FKG inequality.

Applications

  • The thermodynamic limit of the correlations of the ferromagnetic Ising model (with non-negative external field h and free boundary conditions) exists.
This is because increasing the volume is the same as switching on new couplings JB for a certain subset B. By the second Griffiths inequality
J B σ A = σ A σ B σ A σ B 0 {\displaystyle {\frac {\partial }{\partial J_{B}}}\langle \sigma _{A}\rangle =\langle \sigma _{A}\sigma _{B}\rangle -\langle \sigma _{A}\rangle \langle \sigma _{B}\rangle \geq 0}
Hence σ A {\displaystyle \langle \sigma _{A}\rangle } is monotonically increasing with the volume; then it converges since it is bounded by 1.
  • The one-dimensional, ferromagnetic Ising model with interactions J x , y | x y | α {\displaystyle J_{x,y}\sim |x-y|^{-\alpha }} displays a phase transition if 1 < α < 2 {\displaystyle 1<\alpha <2} .
This property can be shown in a hierarchical approximation, that differs from the full model by the absence of some interactions: arguing as above with the second Griffiths inequality, the results carries over the full model.[7]
  • The Ginibre inequality provides the existence of the thermodynamic limit for the free energy and spin correlations for the two-dimensional classical XY model.[4] Besides, through Ginibre inequality, Kunz and Pfister proved the presence of a phase transition for the ferromagnetic XY model with interaction J x , y | x y | α {\displaystyle J_{x,y}\sim |x-y|^{-\alpha }} if 2 < α < 4 {\displaystyle 2<\alpha <4} .
  • Aizenman and Simon[8] used the Ginibre inequality to prove that the two point spin correlation of the ferromagnetic classical XY model in dimension D {\displaystyle D} , coupling J > 0 {\displaystyle J>0} and inverse temperature β {\displaystyle \beta } is dominated by (i.e. has upper bound given by) the two point correlation of the ferromagnetic Ising model in dimension D {\displaystyle D} , coupling J > 0 {\displaystyle J>0} , and inverse temperature β / 2 {\displaystyle \beta /2}
s i s j J , 2 β σ i σ j J , β {\displaystyle \langle \mathbf {s} _{i}\cdot \mathbf {s} _{j}\rangle _{J,2\beta }\leq \langle \sigma _{i}\sigma _{j}\rangle _{J,\beta }}
Hence the critical β {\displaystyle \beta } of the XY model cannot be smaller than the double of the critical temperature of the Ising model
β c X Y 2 β c I s   ; {\displaystyle \beta _{c}^{XY}\geq 2\beta _{c}^{\rm {Is}}~;}
in dimension D = 2 and coupling J = 1, this gives
β c X Y ln ( 1 + 2 ) 0.88   . {\displaystyle \beta _{c}^{XY}\geq \ln(1+{\sqrt {2}})\approx 0.88~.}
  • There exists a version of the Ginibre inequality for the Coulomb gas that implies the existence of thermodynamic limit of correlations.[9]
  • Other applications (phase transitions in spin systems, XY model, XYZ quantum chain) are reviewed in.[10]

References

  1. ^ Griffiths, R.B. (1967). "Correlations in Ising Ferromagnets. I". J. Math. Phys. 8 (3): 478–483. Bibcode:1967JMP.....8..478G. doi:10.1063/1.1705219.
  2. ^ Kelly, D.J.; Sherman, S. (1968). "General Griffiths' inequalities on correlations in Ising ferromagnets". J. Math. Phys. 9 (3): 466–484. Bibcode:1968JMP.....9..466K. doi:10.1063/1.1664600.
  3. ^ Griffiths, R.B. (1969). "Rigorous Results for Ising Ferromagnets of Arbitrary Spin". J. Math. Phys. 10 (9): 1559–1565. Bibcode:1969JMP....10.1559G. doi:10.1063/1.1665005.
  4. ^ a b c Ginibre, J. (1970). "General formulation of Griffiths' inequalities". Comm. Math. Phys. 16 (4): 310–328. Bibcode:1970CMaPh..16..310G. doi:10.1007/BF01646537. S2CID 120649586.
  5. ^ Glimm, J.; Jaffe, A. (1987). Quantum Physics. A functional integral point of view. New York: Springer-Verlag. ISBN 0-387-96476-2.
  6. ^ Friedli, S.; Velenik, Y. (2017). Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction. Cambridge: Cambridge University Press. ISBN 9781107184824.
  7. ^ Dyson, F.J. (1969). "Existence of a phase-transition in a one-dimensional Ising ferromagnet". Comm. Math. Phys. 12 (2): 91–107. Bibcode:1969CMaPh..12...91D. doi:10.1007/BF01645907. S2CID 122117175.
  8. ^ Aizenman, M.; Simon, B. (1980). "A comparison of plane rotor and Ising models". Phys. Lett. A. 76 (3–4): 281–282. Bibcode:1980PhLA...76..281A. doi:10.1016/0375-9601(80)90493-4.
  9. ^ Fröhlich, J.; Park, Y.M. (1978). "Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems". Comm. Math. Phys. 59 (3): 235–266. Bibcode:1978CMaPh..59..235F. doi:10.1007/BF01611505. S2CID 119758048.
  10. ^ Griffiths, R.B. (1972). "Rigorous results and theorems". In C. Domb and M.S.Green (ed.). Phase Transitions and Critical Phenomena. Vol. 1. New York: Academic Press. p. 7.